Conversion of Benzyl6-Diazopenicillanate into 6-Phenylacetylhydrazono- and 6p- Phenylacetylhydrazino-penicillanic Acid

By D. M. BRUNWIN and G. Lowe*

(The Dyson Perrins Laboratory, Oxford University, Oxford **OX1** *3QY)*

CH₂Ph) has been converted into 6-acetyl- and 6-phenylacetyl-hydrazonopenicillanic acid $(3; R^1 = Me, R^2 = H)$ and $R^1 = PhCH_2$, $R^2 = H$) and 6β -acetyl- and 6β phenylacetyl-hydrazinopenicillanic acid $(4; R^1 = Me,$ and $R^1 = \text{PhCH}_2$, $R^2 = H$) and 6β -acetyl- and 6β -
phenylacetyl-hydrazinopenicillanic acid (4; $R^1 = Me$,
 $R^2 = H$ and $R^1 = \text{PhCH}_2$, $R^2 = H$); the latter is an
Stabhalococcus auteus $R^2 = H$ and $R^1 = PhCH_2$, $R^2 = H$); the latter is an effective antibiotic against a penicillin-resistant strain of $Staphalococcus$ *aureus*.

THE potential of esters of 6-diazopenicillanic acid **(1** ; $R^1 = N_2$ ¹⁻³ as a source of new antibacterial agents has not yet been realised. With a view to developing stereo- **R'CONH.** selective reductive methods leading to 6β -penicillanic acid $R^2 = CH_2Ph$) was prepared from penicillin G benzyl ester $(2)^4$ by a modification of the method of Hauser and Sigg,¹ in considerably improved yield. derivatives, benzyl 6-diazopenicillanate $(1; R^1 = N_2,$

(1; $R^1 = N_2$, $R^2 = CH_2$.Ph) in dioxan over 5% palladium eluant, a crystalline complex of triphenylphosphine oxide on barium sulphate gave benzyl penicillanate (1; $R^1 = H_2$, and benzyl 6-hydrazonopenicillanate, m.p. 123– on barium sulphate gave benzyl penicillanate $(1; R^1 = H_2)$, and benzyl 6-hydrazonopenicillanate, m.p. 123-125°.
 $R^2 = CH_2Ph$ as the only isolable product. However When penicillin G benzyl ester (2) was converted into the $R^2 = CH_2Ph$ as the only isolable product. However

Summary Benzyl 6-diazopenicillanate $(1; R^1 = N_2, R^2 =$ treatment of benzyl 6-diazopenicillanate $(1; R^1 = N_2,$
CH₂Ph) has been converted into 6-acetyl- and 6-phenyl- $R^2 = CH_2Ph$) with triphenylphosphine in wet ether gav

Catalytic hydrogenation of benzyl 6-diazopenicillanate after chromatography on silica gel using chloroform as the

complex without purification **of** the intermediates an overall yield of 27% was obtained. Unlike benzyl 6-diazopenicillanate $(1; R^1 = N_2, R^2 = CH_2Ph)$ or benzyl 6-hydrazonopenicillanate $(1; R^1 = H_2N \cdot N; R^2 = CH_2Ph)$ *(vide infra)*, the complex is indefinitely stable at 0° .

Although it was possible to isolate benzyl 6-hydrazonopenicillanate $(1; R^1 = H_2N \cdot N; R^2 = CH_2Ph)$ from the complex by chromatography on silica gel acylation was more satisfactorily achieved using the triphenylphosphine oxide complex. Acetylation with acetic anhydride in the presence of **a** catalytic amount of pyridine gave, after chromatography on silica gel, benzyl 6-acetylhydrazonopenicillanate **(3**; $R^1 = Me$, $R^2 = CH_2Ph$) which was hydrogenolysed over 10% Pd–C in ethanol to 6-acetylhydrazonopenicillanic acid $(3; R^1 = Me, R^2 = H)$. Acylation of the triphenylphosphine oxide complex with phenylacetyl chloride in the presence of pyridine gave, after chromatography on silica gel, benzyl 6-phenylacetylhydrazonopenicillanate $(3; R^1 = \text{PhCH}_2, R^2 = \text{CH}_2\text{Ph})$, $[\alpha]_D^{20} + 268^\circ$ (*c* 0.3, CHCl₃); λ_{max} (EtOH) 269 nm (ϵ 18,000), v_{max} (CHCl₃) 1780 cm⁻¹ (β -lactam); τ (CDCl₃), 4.0 (1H, s, 5-H). Hydrogenolysis over 10% Pd-C in ethanol gave **6-phenylacetylhydrazonopenicillanic acid** $(3; R^1 = \text{PhCH}_2)$ **,** $R^2 = H$).

Stereoselective reduction **of** the benzyl 6-acylhydrazonopenicillanates was achieved by carefully controlled reduction with sodium borohydride in isopropyl alcohol to which solid carbon dioxide had been added in order to control the basicity of the solution. **A** single reduction product was isolated from each reaction, which were shown spectroscopically to be the benzyl 6β -acylhydrazinopenicillanates $(4; R^1 = Me, R^2 = CH_2Ph$ and $R^1 = PhCH_2, R^2 = CH_2Ph)$. Benzyl 6β -phenylacetylhydrazinopenicillanate $(4; R^1 =$ PhCH₂, $R^2 = CH_2Ph$), v_{max} (CHCl₃) 1770 cm⁻¹ (β -lactam); τ (CDCl₃) 5.5 (1H, q, $J_{5,6}$ 4.0 Hz, $J_{6,NH}$ 8.5 Hz, 6-H), 4.4 (IH, d, $J_{5,6}$ 4.0 Hz, 5-H) was hydrogenolysed over 10% Pd-C in ethanol to give 6β -phenylacetylhydrazinopenicillanic acid $(4; R^1 = \text{PhCH}_2, R^2 = \text{H}).$

 6β -Phenylacetylhydrazinopenicillanic acid $(4; \mathbb{R}^1 =$ PhCH₂, $R^2 = H$) was a more effective antibiotic than 6-phenylacetylhydrazonopenicillanic acid $(3; R^1 = PhCH_2)$, **R2** = H) against *Stuphalococcus aureus* NCTC 6571 (Oxford strain) but considerably less effective than penicillin G. However 6β -phenylacetylhydrazinopenicillanic acid (4; $R^1 = PhCH_2$, $R^2 = H$) was not hydrolysed by *B. cereus* penicillinase and had a minimum inhibitory concentration of 16 μ g ml⁻¹ against a penicillinase producing *S. aureus*. Against the same cell inoculum, methicillin had a minimum inhibitory concentration of $4 \mu g$ ml⁻¹.

The authors gratefully acknowledge an S.R.C. research studentship (to D.M.B.) and financial support from the National Research Development Corporation. They also wish to thank Dr. P. B. Loder of the Sir \Villiam Dunn School of Pathology, Oxford, for the biological tests and Dr. **A.** G. Long of Glaxo Research Ltd. for a gift of penicillin G.

(Received, 13th December 1971 ; *Corn.* 2119.)

- 1 D. Hauser and H. P. Sigg, *Helv. Chim. Ada,* **1967, 50, 1327.**
- ² I. McMillan and R. J. Stoodley, *J. Chem. Soc.* (C), 1968, 2533.
³ J. P. Clayton, *J. Chem. Soc.* (C), 1969, 2123.
⁴ A. W. Chow, N. M. Hall, and J. R. E. Hoover, *J. Org. Chem.*, 1962, 27, 1381.
-
-